Tag Archive | monosynth

Synthfest UK 2019: my DIY modular gets screen time!

For the last three years I’ve been working hard on a complete modular synth system (which is partly why this blog has been so quiet lately), and at last the graft is starting to pay off!

I took it to Synthfest UK 2019 last weekend to give people a chance to see it, hear it, and more importantly to play it. Happily, it went down very well, and to my surprise the crew from Sound on Sound magazine asked me for an interview! Of course I was excited to oblige, and here (unscripted, unprepared, and with terrible hair) is my 6 minutes of fame…

As outlined in the interview, the synth itself is currently two cabinets. The upper cabinet contains:

  • VCO
  • VCF (24dB low pass)
  • VCA (transistor design with lots of colour)
  • ADS(R) envelope (Decay and Release share a control)
  • Dual lag processor
  • White & pink noise
  • Dual LFO (with waveshaping)
  • Passive ring modulator
  • Passive filters (Low and High pass)
  • Passive attenuators
  • Passive multiples
  • PSU

The lower cabinet contains the following, at the time of writing:

  • Dual VCA
  • AR & ADSR envelopes
  • Envelope follower
  • Gate delay
  • Audio (log) mixer
  • Attenuverting linear mixer
  • CV sources and inverters
  • Dual Sample & Hold
  • Headphone output and extra gain control
  • Buffered mults & inverters
  • PSU

I was ill for a couple of weeks leading up to the show, so I didn’t get chance to complete and install the High Pass VCF (24dB) that I had working and half-built, so that’s going in next. That leaves one slot in the lower cabinet which will become a Dual VCO.

The synth as it was for Synthfest UK 2019:

Photo of my DIY modular at Synthfest UK 2019

Photo of my DIY modular at Synthfest UK 2019

There’s a long way still to go. Once the lower cabinet is complete, I’ll be making another cabinet of sequencing and control modules – clock converters, triggers, all that kind of thing. I’ve also got plans for various units that I think will become separate devices, and which are at various stages of development. I’m trying to keep the focus on finishing this pair of cabinets first, and taking things one step at a time.

My aim is to turn these into modules you can buy. That’s also in progress, but it’s not about to hit the streets just yet. Hopefully something will start to appear in 2020, but the most important thing is to get this right, so releases of any kind will happen when they’re ready. There’s a lot of work in turning an idea into a product!

Watch this space, anyway. Meanwhile, I’ll try to keep posting a few synth DIY circuits, and maybe some details about vintage synths, but I have had to focus my time and energies on the design and testing for now. This blog is definitely not done yet, I will keep it going as long as I possibly can, but posts will be more widely spaced than they were in, say 2014-16, when I was dissecting the Lambda and modding my old Werkstatt. I haven’t forgotten those people who message me here and ask questions, either! I still try to answer as many of those as possible, where it’s appropriate and I am able to find the time. Please do keep asking, I’m very happy that my little blog gets such an audience!

I wish you all the best, and hope to continue seeing you here for a long time to come!

Nathan

 

 

Korg MS-04 Modulation Pedal

The Korg MS-04 accessory was contemporary with the MS-series analogue monosynths in the late ’70s and early ’80s. It looks like a standard volume pedal, and weighs in around 1kg owing to its sturdy metal construction. Essentially it’s a bender pedal that provides a variable voltage to control your synthesizer. It also provides an LFO with triangle and positive-only square waveforms, and a random output that is sampled at the LFO rate. The range of the LFO goes from around 1s/cycle at the slow end to 70ms/cycle at the fast end (around 1Hz to 14Hz). It adds a glissando feature, which puts the bender pedal through the sample-and-hold instead. It has two outputs, which can be switched on and off, and which can output either the LFO alone, the pedal voltage alone, or a mix of both. One output runs at ±1.2V peak, the other at about ±5V. An LED indicates the LFO rate. It is powered by two 9V PP3-style batteries.

Inside, there is a small PCB with a few dozen components on, and a whole lot of wiring connecting the panel-mounted pots, switches, and jacks. Some components are soldered directly to the panel parts, and there are multiple wires of the same colour that don’t always run to the same points, so trouble-shooting is slightly messy. Luckily, it’s a simple enough circuit, and the spaghetti wiring is the only thing that need cause any headaches here.

Inside the Korg MS-04 modulation pedal. So many wires!

Inside the Korg MS-04 modulation pedal. So many wires!

The only schematic I could find online was blurry and hard to read, and lacks component numbering. I did my best to clear it up, and added the missing information. Unfortunately, half way through, my software crashed and my only saved file was of lower quality than I would have liked – hence the soft text over about half the image. I’d already put plenty of time in by this point, so it’ll have to do!

My additions are self-explanatory, I think. Parts that are not numbered are soldered directly onto panel hardware. The only missing values are the diodes – D2 to D5 are plain old signal diodes, D1 is a zener that I failed to make note of during repair. Sorry.

There seems to have been a change in some component values during production. These are labelled with ‘1’ and ‘2’ in black squares. The unit I took my details from had the lower value resistors and larger capacitor at points ‘2’.

There is no protection against only one battery being installed. The unit is switched on by the insertion of a cable into either output jack, so it is advised to remove the connections before fitting/replacing the batteries.

Korg MS-04 schematic, enhanced with component designations

Korg MS-04 schematic, enhanced with component designations (JPG)

Here’s the Korg MS-04 schematic as PDF download.

And here’s a quick video of it working:

Moog Werkstatt: adding a proper Gate input

Note: I make reference to the Moog Werkstatt schematics throughout. Copyright prevents me reposting them here; they can be found on Moog’s website.

In its original form, the Werkstatt’s own keyboard generates the Gate signal to trigger the envelope, and there is no obvious ‘Gate Input’ on the header. The existing Gate Out can be (ab?)used as a Gate In, but it’s not ideal, because as with most of these header points, anything coming in here isn’t buffered from the internal signal.

Adding a proper Gate In to the Werkstatt is straightforward enough, though a little more involved than the CV input; my approach doesn’t require the cutting of any traces, the only hack-work being the hole in the enclosure for a jack socket. It does require the end of one wire to be soldered to rather small SMT (surface-mount) components though, so you’ll need a suitably fine tip for your iron and a steady hand.

Werkstatt gate mod schematic

Werkstatt Gate Input mod schematic

 

How it Works

The Werkstatt’s keyboard scanner outputs a logic high at U19 pin 3 when it detects a key press. As well as stopping the scan and loading the current key value into a latch (which feeds the VCO CV), this signal is buffered to provide a Gate, and differentiated to provide a Trigger. The Key On signal is buffered inversely by the Schmitt trigger of U14-F before being flipped back positive by U14-D. In order to add our external gate without affecting any other part of the keyboard circuit, we only need to bring the input of U14-D low. In this way, we can use both the Werkstatt’s own keyboard and an external Gate without having to switch between control sources.

The solution is to use a simple NPN in saturation to take U14 pin 9 to ground when its base is taken high. In other words, a positive external Gate will take the gate inverter input low, just as does the keyboard gate detector. Because there is a diode in the way (D14), our added transistor is isolated from the keyboard scanner clock and data-bus, so there won’t be any accidental mis-readings of the keyboard CV.

Another advantage of this solution is that the Werkstatt’s own envelope retains its Gate/Trigger operating modes, as our external Gate also gets differentiated; we are activating the Werkstatt’s envelope, not over-riding it.

The modification takes just four components and a socket, and fits easily on the PCB. The hardest part is soldering the wire from the collector of the transistor to the appropriate point on the Werkstatt’s circuit – I chose to solder it across the connection between R89 and C64, as the two solder points make a convenient place to lay a thin wire and give it a firmer purchase.

I presume you’ll be doing both CV and Gate input mods; the socket ground can be wired to the CV In socket ground, which I wired to a solder tag around the nearby PCB mounting screw (see also the CV Input page).

Werkstatt gate input mod smt solder point

Werkstatt Gate Input mod SMT solder point

 

Werkstatt gate mod extra components highlighted

Werkstatt Gate Input mod extra components highlighted (PCB top)

 

Werkstatt gate mod PCB rear highlighted

Werkstatt Gate Input mod extra components highlighted (PCB rear)

*

Parts Used:

33k 1/4W 1% MF resistor
100k 1/4W 1% MF resistor
1N4148 signal diode
BC549C NPN transistor
1/8” panel mount socket
wire

These parts are what I had handy. Pretty much any NPN with reasonable gain can be used here, and the signal diode is a generic one.

Moog Werkstatt: adding a proper CV input

Note: I make reference to the Moog Werkstatt schematics throughout. Copyright prevents me reposting them here; they can be found on Moog’s website.

The existing header on the Werkstatt allows for a VCO pitch CV to be patched in. Although the pitch can already be modulated by either the LFO or the EG (selected using a panel switch), the patch header input means you can use both modulation sources simultaneously – or an external CV, if you can cable it up.

When you start wanting to connect control sources to the Werkstatt, one problem is pretty obvious: the patch pin header provides a signal path, but there’s no ground. The user manual suggests hacking cables together, taking a ground from the cable to a screw on the case (or the ground on the audio output jack), but this isn’t a very neat solution. Better to add a proper CV input jack so you can directly and simply hook up your external CV source using standard cables.

Moog themselves (at the time of writing) do sell an add-on jack board, which provides both a row of minijacks and a signal ground, but I decided against buying it for two reasons: 1) it still doesn’t offer a true Gate input, which I felt necessary; 2) the jack board replaces the patch pin header – adding mods like mine means you can use them and the patch pins simultaneously, giving more possibilities.

How it Works

The circuit is very simple. Looking at p.2 of the official schematic, we can see the existing header CV input is mixed in via a resistor R46 and trimmer VR5. This trimmer can be carefully adjusted to give a 1V/octave response for your external CV.

It would be super-easy to simply wire a jack to the CV point on the header, but this has the disadvantage that inputs are not isolated from each other. Better (and still easy) is to replicate the two passive components and route them to the same mix point.

Here are my additions to the circuit:

Werkstatt CV modification schematic

Werkstatt CV modification schematic

Here is the mod in situ:

Werkstatt CV input mod (top)

Werkstatt CV input mod (top)

Werkstatt CV input mod, rear

Werkstatt CV input mod (rear)

The handiest solder points for connecting the extra components to the existing circuit are TP14 and TP10. Either will do:

Werkstatt CV input mod routing

Werkstatt CV input mod routing

The jack is wired to be brought to the side panel beneath the header. In this photo the Gate mod jack is also in place. The jack grounds are wired together, and then to a solder tag that connects to the nearby screw post. The existing screw is long enough to accommodate a washer or two:

Werkstatt mod ground point

Werkstatt mod ground point

Drilling the hole in the case is simple and quick, and a label finishes the job:

Werkstatt with CV and Gate mods

Werkstatt with CV and Gate mods

The accompanying Gate Input mod is also detailed on this site.

*

Parts Used

68k 1/4W 1% MF resistor
100k trimmer
1/8” panel mount socket
3mm solder tag
3mm washers (x2)
wire

Yamaha CS Trigger Input Modification

Problem: Yamaha CS not triggering from an external Gate
Solution: small converter circuit

I had a Yamaha CS5 for some time, a neat little monophonic synth with one oscillator, one envelope, switchable HP/BP/LP filter, a simple LFO, white noise, and a single VCA. It has Control Voltage and Trigger input jacks round the back for interfacing with other devices.

The CS series uses a Hz/V (Hertz per Volt) CV, and the better modern MIDI-CV interfaces can handle this with no problem. The Trigger levels are comparatively awkward though, with ‘off’ being nominally +3 to +15V, and ‘on’ being nominally 0 to -10V. I say ‘nominally’, because the outputs of these CS synths are stated as +3V for off, -7V for on.

Why is this awkward? Well, there are two other common systems – Positive Gate (aka V-Trig), and Short to Ground (aka S-Trig), which I shall not discuss here – and whereas the other systems have been employed by several manufacturers, Yamaha was, and is, on its own with theirs. Though many CV interfaces are stated as being compatible with Yamaha CS synths, I have found this not to be reliably the case.

The problem comes when a Short to Ground signal will not trigger a Yamaha Gate. For whatever reason, some units just don’t provide a good enough trigger output to correctly pull down the inputs of some Yamaha CS triggers. I suspect a number of things, but won’t speculate here as I found an easy and practical solution.

*

I owned both a CS5 and CS15, which use very similar, but not identical, trigger input circuits. My Kenton Pro-2 MIDI-CV interface would trigger the 15, but not the 5.

The Pro-2 is an older model, and has been long superceded by better units, but at the time I wanted to get the Kenton and the CS5 working correctly. My solution was to build a small buffer board and install it in the Kenton, adding a separate Trigger Out jack on the Kenton specifically designed for Yamaha’s system.

It works very simply. The Kenton provides a +15 Positive Gate by default. Its own subsequent conversion to S-Trig being insufficient, I added to the V-Trig output a single op-amp with a few resistors to provide both offset and scaling of the signal, transforming it into the ‘correct’ +3/-7V, and routed the new Trigger output to its own ‘CS-Trig’ jack socket. The schematic can be found below in both JPEG and PDF formats.

The circuit can be built onto a small piece of stripboard; I used a TL072 as it’s what I had to hand, but almost any op-amp will do. Mine was powered from the dual +15/-15 supply rails in the Kenton, but you could equally well install it within your CS synth if desired – just pay attention to where in the circuit you install it. Perhaps add a second jack for this input if you wish to leave the original in place (for example, if you wish to run your badly-triggering CS from another CS). Another option would be to install a switch to select the type of Gate input being used. That’s up to you; I present only the basic circuit that converts one gate to another.

NB: actual output values are 3.74V for ‘off’ and -6.45V for ‘on’, but they are within tolerance and much closer to Yamaha spec than the regular S-Trig.

*

Schematic for a V-Trig to Yamaha CS-Trig converter

Schematic for a V-Trig to Yamaha CS-Trig converter

PDF version: CS Trig schematic

Here are a couple of photographs of the extra board in situ in the Kenton Pro-2. Note the angled PCB at the bottom left is Kenton’s own optional Hz/V CV board (from the factory the Pro-2 only provided V/Oct CV). My extra circuit is mounted on the small piece of stripboard at top left. It takes power from the Kenton’s 15V rails, and takes its trigger input from the Kenton’s V-Trig +15V Gate, and it outputs a near-Yamaha-spec +3/-7V off/on gate signal to a dedicated jack socket which I added myself. The unused half of the dual op-amp is not connected to anything other than 0V and itself, as indicated on the schematic. If you use a single or even quad op-amp in this circuit, re-arranging the pin-out is up to you.

V-Trig to CS-Trig convertor installed in Kenton Pro-2

V-Trig to CS-Trig convertor installed in Kenton Pro-2

V-Trig to CS-Trig convertor installed in Kenton Pro-2, detail

V-Trig to CS-Trig convertor installed in Kenton Pro-2, detail

 

%d bloggers like this: